If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+99x+108=0
a = 18; b = 99; c = +108;
Δ = b2-4ac
Δ = 992-4·18·108
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(99)-45}{2*18}=\frac{-144}{36} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(99)+45}{2*18}=\frac{-54}{36} =-1+1/2 $
| 2x+6=9x+5 | | 6n+3=5n+4 | | 5^x-5=13 | | 5x+2-3x=12+x+3 | | 2(7x+4x)=4x-6(2-x)+7 | | 2(7x+4$=4x-6(2-x)+7 | | 1/4y-16+2=-(4/y-4) | | -110=-3v+5(1-4v) | | (2x)-6=x+7 | | 2x+10=5x+9 | | 3(x-5)+(8x+2)=7x-9 | | 3x+4+115=180 | | -4t-6-t=-2t | | (2x+3)(3x+2)=(3x+4)(2x-1) | | 4+x÷5=8 | | 196=7(3-4a)+7 | | -7x+3(x+2)=26 | | 3^x+2=10 | | -7x+3(x+x)=26 | | 2=x^2+3x+2 | | -15+3x-7x=-4× | | 2x-26=26 | | 10y^2+3Y-18=0 | | (3^5x+4)=(9^2x+3) | | 3^(n-2)=27 | | 5x2=4x21-x | | 3^(2x+1)-8*3^x=3 | | y^2+11y+-20/y^2+4y+3=0 | | F(x)=0.5^2 | | 2(z+5)+3z=15 | | 1/3x-4=x^2 | | p/9.5=2.87947 |